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Abstract.

The application of a parametric time series model to a water resources

problem involves selecting a model and estimating its parameters, both steps adding
uncertainty to the analysis. The moving blocks bootstrap is a simple resampling algorithm
which can replace parametric time series models, avoiding model selection and only
requiring an estimate of the moving block length. The moving blocks bootstrap resamples
the observed time series using approximately independent moving blocks. A Monte Carlo
experiment is performed involving the use of a time series model to estimate the storage
capacity S of a surface water reservoir. Our results document that the bootstrap always
produced storage estimates with lower root-mean-square-error than a parametric
alternative, even when no model error is introduced into the parametric scheme. These
results suggest that the moving blocks bootstrap can provide a simple and attractive

alternative to more complex multivariate ARMA models.

Introduction

Time series models are intended to mimic both the deter-
ministic and the random nature of hydrologic variables in both
space and time. The spatial and temporal structure of hydro-
logic time series is extremely complex, leading to an evolution
in parametric time series methods from the relatively simple
univariate and multivariate models, introduced by Fiering
[1967] and others, to the more sophisticated disaggregation
models [Lane, 1979; Salas et al., 1980; Stedinger and Vogel,
1984; Grygier and Stedinger, 1988]. Salas et al. [1980] and Salas
[1993] review parametric time series methods in water re-
sources. Parametric methods differ significantly from their
nonparametric alternatives because parametric methods re-
quire assumptions regarding (1) the marginal probability dis-
tributions of the variables and (2) the spatial and temporal
covariance structure of the variables. Nonparametric methods
simply retain the empirical structure of the observed variables.
More importantly, parametric methods require estimates of
various model parameters which nonparametric methods can
either minimize or avoid altogether. Stedinger and Taylor
[1982b] and Vogel and Stedinger [1988] have documented that
errors arising from parameter estimation of time series models
can easily overwhelm issues of model choice, given the short
hydrologic records usually available. Can nonparameteric time
series methods such as the bootstrap reduce uncertainties due
to parameter estimation and model choice while coincidently
preserving important statistical properties of the flow vectors?

The Bootstrap and the Moving Blocks Bootstrap

Nonparametric time series methods are becoming increas-
ingly popular in water resources as evidenced by their coverage
in a recent textbook [Helsel and Hirsch, 1992] and review article

Copyright 1996 by the American Geophysical Union.

Paper number 96WR00928.
0043-1397/96/96 WR-00928$09.00

[Lall, 1995]. The field of nonparametric statistics is under rapid
growth. A few years ago, one approach, known as the boot-
strap, was only described in the mathematics research litera-
ture. Now there are textbooks describing the bootstrap [LePage
and Billard, 1992; Efron and Tibshirani, 1993; Hjorth, 1994].

The bootstrap is the simplest technique for simulating the
probability distribution of any statistic, without making any
assumptions or estimating any parameters. It is a good example
of a new class of nonparametric statistical methods which sub-
stitute computer intensive computations for complex mathe-
matical (parametric) models. Bootstrapping amounts to resa-
mpling a record, with replacement, to generate B bootstrap
samples, from which one can simulate B estimates of a given
statistic, leading to an empirical probability distribution of the
statistic. Suppose one wishes to estimate the empirical cdf of a
statistic 6, which is estimated from a given sample x,, i =
1, -+, n which we denote X. Each observation x; is resa-
mpled, with replacement, with an equal probability of 1/n. The
sample X continues to be resampled with replacement B times,
until B bootstrap samples X;, i = 1, -+, B are obtained.
Each bootstrap sample X; yields a bootstrap estimate of the
statistic 6 leading to the B bootstrap estimates é,-, i=1,--,
B, the desired result. The bootstrap is simple to implement
using a spreadsheet [Willemain, 1994], an important fact in
water resource engineering because many models are impe-
mented using spreadsheets.

The bootstrap can be used as a nonparametric time series
model. One simply resamples, with replacement, from the his-
torical record. The challenge is to resample the records, in such
a way as to assure that the temporal and spatial covariance
structure of the original time series is preserved. For example,
suppose a time series of annual streamflow arises from an
AR(1) process with serial correlation p. For small values of p,
sequences of 5-year flows will be approximately independent,
and hence applying the bootstrap to 5-year flow traces will
preserve, approximately, the serial correlation structure of flow
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series. Resampling A-year blocks, as described above, is known
as the moving-blocks bootstrap first introduced by Kiinsch
[1989] and discussed by LePage and Billard [1992] and Efron
and Tibshirani [1993]. In a moving-blocks bootstrap, one
chooses a block length A ~ n/k, where n is the record length
and k is the number of blocks to resample. The idea is to
choose a large enough block length A so that observations
more than A time units apart will be nearly independent.
Again, suppose the original time series is AR(1) with serial
correlation p. By sampling blocks of length A, we retain the
original correlation p among the observations within each
block, yet adjacent blocks are uncorrelated. Using a circular
definition of serial correlation, the average effective serial cor-
relation of the moving-blocks bootstrap samples will be

pacne= (50 + (5 )o= (A1) )

because there are k adjacent block intersections, leaving the
remaining n — k observations in their original serial order. As
the block length A increases, p.geciive approaches p; however,
increasing A leads to a smaller number of blocks k£ = n/A left
to bootstrap. Equation (1) also shows that for a given block
length A, bootstrap flow traces will always have lower serial
correlation than the parent trace and that downward bias does
not disappear with increasing sample size. However, larger
sample sizes allow for larger block lengths A because there are
more blocks £ = n/A to bootstrap.

Some Applications of the Bootstrap
for Simulating Streamflows

This section reviews a few studies which are similar in spirit
to this study in the sense that they use nonparametric methods
to simulate streamflows. For a more detailed survey of appli-
cations of nonparametric methods to time series problems in
water resources, see Lall [1995] and Lall and Sharma [1996].
The bootstrap is not really new to hydrology. Sudler [1927]
recommended a method which amounts to shuffling and deal-
ing a deck of cards, in which each card contains an observed
annual streamflow. His approach produces equally likely sets
of independent streamflow traces. Sudler’s approach is equiv-
alent to the modern bootstrap; however, the bootstrap is now
much easier to implement using a computer. More recently,
Lall and Sharma [1996] introduce a bootstrap method for re-
sampling monthly streamflows which preserves the depen-
dence in a probabilistic sense. Their bootstrap is termed a
nearest neighbor bootstrap because it searches the historical
record to find the historic nearest neighbors and subsequently
resamples their successors to preserve the empirical depen-
dence of the flow trace. Zucchini and Adamson [1988] used a
simple bootstrap to estimate confidence intervals associated
with annual inflows to a reservoir system. Hausman [1990]
showed that use of a moving-blocks bootstrap (with A = 2) led
to about the same storage-reliability-yield relationship as did
an AR(1) annual flow model for the Boston water supply
system.

Nonparametric resampling algorithms, such as the boot-
strap, are much simpler to implement than their parametric
alternatives. It is for this reason that the Bureau of Reclama-
tion of the U.S. Department of the Interior often uses a non-
parametric resampling scheme termed the indexed sequential
method (ISM) instead of their own parametric disaggregation
model (W. Cheney, personal communication, 1995) termed
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LAST [Lane, 1979]. The ISM method generates equally likely
streamflow traces from the historical record, by using short
overlapping traces. For example, from a 50-year flow record,
one selects the flows in years 1-10 for realization number 1, the
flows in years 2-11 for realization number 2, and so on. This
method suffers from a number of disadvantages including (1)
intercorrelation among the resampled flow records, (2) limited
number of potential resampled flow records, and (3) length of
resampled flow records must be much shorter than the original
record length. In spite of these significant shortcomings, La-
badie et al. [1987] and Kendall and Dracup [1991] conclude that
the ISM procedure is comparable to parametric alternatives: it
is certainly much simpler. The ISM is not a moving-blocks
bootstrap because new sequences are not assembled by ran-
domly piecing together different blocks. Each new ISM se-
quence contains every historical streamflow, unlike the boot-
strap sequences which do not usually contain every historical
streamflow.

Limitations of the Bootstrap

A bootstrap trace, unlike a trace from a parametric time
series model, is limited to the original historic observations.
Since the bootstrap will never generate an observation either
larger or smaller than the maximum or minimum historical
observation, the bootstrap is not useful for examining the prob-
ability distribution of the largest or smallest observation, unless
the sample size n is greater than the planning horizon N.
Similarly, if one bootstraps annual streamflows in a reservoir
application, one never achieves a smaller flow than the mini-
mum historical flow, hence the bootstrap is not useful for
systems dominated by within-year storage requirements be-
cause the bootstrap could never produce a worse drought than
that experienced historically. Yet the bootstrap does have po-
tential for systems either dominated by over-year storage re-
quirements or for systems with a combination of over-year and
within-year requirements. For such systems the changes in the
serial structure of the annual flows is enough to provide a rich
set of alternate drought sequences with which to evaluate res-
ervoir operations. For example, reordering of the historical
sequence using the bootstrap can lead to two or more of the
lowest flows occurring consecutively, producing a drought
which is much larger than the most severe historical drought.

Monte Carlo Experiment

Given the increasing need to evaluate the operations of
complex water resource systems, time series methods are likely
to find increasing usage. The question remains whether an
analyst should consider selecting, estimating, verifying, and
validating a parametric time series model using the procedures
outlined by Stedinger and Taylor [1982a] or apply a nonpara-
metric method where model selection, parameter estimation,
and model validation issues are grossly simplified in compari-
son to the parametric method. We perform a simple experi-
ment to document the advantages and limitations of nonpara-
metric time series methods over their parametric alternatives,
for a simple reservoir design problem.

Assume a water resource engineer is faced with the problem
of estimating the storage capacity S, associated with a surface
water reservoir. Here S, is the capacity of a storage reservoir
required to supply a constant no-failure annual yield of ap
over an N-year planning period with reliability p. Here uw is the
mean annual inflow to the reservoir and « is the level of
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development or the fraction of the mean annual flow which is
delivered by the reservoir. The traditional solution to this
problem has been to route the historical streamflows though a
hypothetical reservoir system, releasing the yield au and
choosing S as the reservoir capacity which would have just
delivered the yield, without failure, over the n-year historical
record. This solution was first proposed by Ripp! [1883] and has
been used in the design of almost every reservoir in the United
States. Unfortunately, a single historic streamflow trace only
leads to a single value of S which has a reliability of 50%, on
average [Stedinger et al., 1983]. Time series models are useful
for the generation of alternative yet likely streamflow traces
and, subsequently, routing them through a storage reservoir,
leading to a probability distribution of .

Vogel and Stedinger [1987] document relationships for esti-
mating S, when inflows follow an AR(1) lognormal model.
Those analytic relationships take the form

Sp:f(m7 Cw P Ol,PaN) (2)

where

C-ap (1-a)
m = o - Cv 5

mean annual inflow to reservoir;

standard deviation of annual inflows;
lag-one correlation of annual inflows;
coefficient of variation of annual inflows;
demand as a fraction of mean annual inflow;
yield reliability over N-year period;

length of planning period.

Z an SERS

Equation (2) is used to obtain population values of S, to
compare with sample estimates of §,, derived from the use of
both parametric and nonparametric time series models.

Experimental Design

All of the experiments follow the same general procedure.
First 20,000 sets of “historic” flow traces of length n = 40 and
80 were generated from an AR(1) lognormal model with u =
1.0, ¢ = 0.4, and p = 0.0 and 0.3. Each flow trace of length n
is assumed to be a flow trace which would be available to a
stochastic hydrologist, who would then use that trace to fit a
time series model and estimate §,,. Two approaches to esti-
mating S, are taken: (1) the parametric stochastic hydrologist
(PSH) fits an AR(1) lognormal model to the “historic” flow
traces and (2) the nonparametric stochastic hydrologist (NSH)
bootstraps the “historic” flow traces.

One Monte Carlo Experiment Using the Parametric
Time Series Model

The PSH is assumed to use the ordinary product-moment
estimators
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to fit an AR(1) lognormal model to each “historical” flow
trace. The fitted AR(1) lognormal model is then used to gen-
erate 1000 “synthetic” flow traces of length N = 40 and 80.
Each “synthetic” flow trace is then routed through a reservoir
system using Rippl’s [1883] mass curve approach, leading to
1000 estimates of required storage S;, i = 1, -+, 1000 which
are ranked and sorted to obtain a single estimate § e

One Monte Carlo Experiment Using the Bootstrap

The NSH uses the bootstrap to resample, with replacement,
from the “historic” flow trace, producing a total of B = 1000
“synthetic” flow traces of length N = 40 and 80. Similar to the
PSH, each “synthetic” flow trace is then routed through a
reservoir system using Rippl’s [1883] mass curve approach,
leading to 1000 estimates of required storage S;, i = 1, ---,
1000 which are ranked and sorted to obtain a single estimate $ -

Summary of Monte Carlo Experiments

Each Monte Carlo experiment results in a single estimate of
Sp for the p = 5, 25, 50, 75, qnd 95th percentiles, for the
PSH and the NSH. For example, S5, represents an estimate of
the storage capacity that has a 50% reliability of meeting its
yield, without failure, in future N-year planning periods. Ex-
periments are performed for levels of development o = 0.7
and 0.9. A total of 20,000 Monte Carlo experiments are per-
formed, leading to 20,000 values of S , for each yield, for both
the PSH and the NSH. Note that each of those 20,000 Monte
Carlo experiments involve generating 1000 synthetic flow
traces which are in turn used to estimate S,. Figures 1-6
summarize the results of these experiments in terms of the
percent bias and percent root-mean-square-error (rmse) asso-
ciated with Sp. Here percent bias is defined as (E [S'P] —S,)/S, and
percent rmse is defined as E[(S, — S,)*]"/?/S,, with the true
values of §,, obtained by using the relations given by Vogel and
Stedinger [1987].

Results

The simple bootstrap (A = 1). Figures 1 and 2 illustrate
the bias and rmse associated with § , for independent flow
traces (p = 0) with » = N = 40 and 80, respectively. The
bootstrap always produced estimates of S, with lower root-
mean-square-error than did the parametric model. As expected,
both procedures exhibit minimal bias, with any bias nearly
disappearing for the larger sample size n = N = 80. Figures
1 and 2 document the advantage of the bootstrap over one
parametric alternative, when the block length is chosen correctly.

Figures 3 and 4 illustrate the bias and rmse associated with
S, for correlated flow traces (p = 0.3) withn = N = 40 and
80, respectively. Now the bootstrap produced estimates of S,
with much greater (downward) bias than the parametric
model, yet still, the rmse associated with § » was about equal
for both methods, indicating that the bootstrap produces esti-
mates of §, with much lower variance than the parametric
method. Note that mean-square-error of an estimator is equal
to the sum of its variance and its bias squared.

The simple bootstrap results in significant downward bias in
Sp, for correlated samples, because it generates “synthetic”
flow records which lack serial correlation. Phatarfod [1986] has
shown that estimates of S, for correlated flows are inflated by
a factor of (1 + p)/(1 — p) over independent flows, which
amounts to an almost doubling for p = 0.3. Therefore the
extraordinary downward bias exhibited in Figures 3 and 4, for
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Figure 1. Comparison of bias and root-mean-square-error (rmse) associated with § » using an AR(0) normal
model and a simple bootstrap with A = 1, when p = 0 and n = N = 40.

the bootstrap, is expected, when the block length is too short to
preserve the serial correlation of the flows.

Results

The moving-blocks bootstrap (A > 1). Figures 1-4 docu-
ment that the bootstrap has potential as a time series model if
methods were available to introduce the proper serial correla-
tion into the bootstrapped “synthetic” time series. One simple
approach employed here is to bootstrap A = 2-year flow se-
quences; that is, rather than resampling the “historic” time-
series record in 1-year blocks, resample it in 2-year blocks so as
to reproduce half of the year-to-year serial correlation of the
flows. Note that for A = 2, equation (1) yields p.geciive = P/2-
This approach was taken, and the experiments which led to
Figures 3 and 4 were repeated and summarized in Figures 5
and 6 forn = N = 40 and 80, respectively. Figures 5 and 6
reveal that the moving-blocks bootstrap always led to lower
rmse associated with S‘p than the parametric procedure. The over-
all reductions in rmse result from having bootstrapped 2-year
blocks, which reduced the bias in § - Yetstill, Figures 5 and 6
reveal that the moving-blocks bootstrap leads to significant
downward bias in storage capacity estimates and that bias does
not disappear for larger samples. This significant downward
bias is to be expected because the effective correlation of the
bootstrap sequences is only 0.15 instead of 0.3 as it should be.
Increasing the length A > 2 of the moving blocks would lead to
still lower bias in § - No methods are currently available for
choosing an effective bootstrap block length [Efron and Tib-
shirani, 1993]; future research should address this subject.

Discussion of Results

Our results suggest that resampling from the empirical dis-
tribution function of lognormal data is more efficient than

generating data from a lognormal model fit using method of
moments. Stedinger [1980] documents that for the cases con-
sidered here; C, = 0.4, n = 40 and 80, MLE’s are slightly
more efficient than method-of-moment estimators, hence our
results are due in part to our use of method-of-moments esti-
mators instead of MLE’s. On the one hand, we give an advan-
tage to the NSH by not allowing the PSH to use the most
efficient estimators. On the other hand, we give an advantage
to the PSH by choosing the correct model structure because, in
practice, the PSH has added uncertainty resulting from errors
in model choice.

The increased uncertainty resulting from parameter estima-
tion is even more complex than described above. Suppose the
problem were simpler and the PSH draws samples from a
normal distribution with estimated mean ¥ and variance s>
The PSH generates samples using x = ¥ + sz, where z is a
standard normal random variable. In this case, Stedinger [1983,
equation (33)] shows that Var(x) = o*(1 + 1/n), so the PSH
generates flows with an inflated variance, across all samples.
Note that the inflation in the variance of the flows generated by
the PSH is likely to be even worse for lognormal flows and for
serially correlated flows. The NSH always draws samples from
a normal distribution with the correct mean w and variance o°.
The inflation in the variance of the generated flows associated
with the PSH leads to slightly larger rmse (8 ) than for the
NSH who generates flows with the proper variance.

Other Promising Bootstraps

The moving-blocks bootstrap is only one approach for pre-
serving the serial correlation of the original time series. Politis
and Romano [1992] suggest using a circular moving-blocks
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Figure 2. Comparison of bias and rmse associated with § , using an AR(0) normal model and a simple
bootstrap with A = 1, when p = 0andn = N = 80.

bootstrap to preserve the sample mean of the original time
series. Efron and Tibshirani [1992] and Hjorth [1994] suggest
the use of residual resampling schemes, where one first as-
sumes a model structure, estimates model parameters and

model residuals. One then bootstraps the estimated model
residuals and, finally, the bootstrapped residuals are used to
synthesize a time series. This approach preserves the empirical
density function of the original time series; however, in our
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Figure 3. Comparison of bias and rmse associated with § , using an AR(1) normal model and a simple
bootstrap with A = 1, when p = 0.3 and n = N = 40.
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Figure 4. Comparison of bias and rmse associated with § » using an AR(1) normal model and a simple
bootstrap with A = 1, when p = 0.3 andn = N = 80.

opinion it has little other advantage. Oliveira et al. [1988] dis- ral correlation of the observations is transformed into inde-
cuss the use of a nonparametric model of residuals for gener- pendent spectral increments. Efron and Tibshirani [1993] also
ating monthly streamflows at many sites in a region. Hjorth  provide citations to numerous other time series applications of
[1994] also describes a spectral bootstrap in which the tempo-  the bootstrap.
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Figure 5. Comparison of bias and rmse associated with § ,» using an AR(1) normal model and a moving-
blocks bootstrap with A = 2, when p = 0.3 and n = N = 40.
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Figure 6. Comparison of bias and rmse associated with § » using an AR(1) normal model and a moving-

blocks bootstrap with A = 2, when p = 03 andn = N =

Conclusions

This study has shown that the moving-blocks bootstrap,
which simply resamples the observed time series in approxi-
mately independent blocks, can provide a very simple and
attractive alternative to parametric time series models. The
moving-blocks bootstrap provides “synthetic” time series
which preserve the empirical probability distribution of the
original observations. If the block length is chosen correctly,
the moving-blocks bootstrap can also approximate the empir-
ical covariance structure of the original observations. A Monte
Carlo experiment revealed that even though the bootstrap
does not introduce any new “synthetic” observations, still, it
always produced estimates of the storage capacity with lower
root-mean-square-error than estimates based on the correct
parametric time series model. The advantage of the bootstrap
over the parametric model is due primarily to the fact that the
parametric model requires estimates of model parameters
which contain uncertainty because of the short records upon
which they are based. The advantage of the bootstrap over
parametric models would be even greater in practice because
of the added uncertainty resulting from the fact that one never
knows the correct parametric model to apply. The moving-
blocks bootstrap does not require one to select a model and
the only parameter required is the block length A.

This study compares the use of a bootstrap with parametric
alternatives for generating univariate (annual) time series. The
use of the bootstrap in time series analysis is receiving consid-
erable attention in the statistics literature, as documented by
LePage and Billard [1992], Efron and Tibshirani, [1993], and
Hjorth [1994]. The moving-blocks bootstrap concept can be
easily extended to multivariate time series in both space and
time similar to the way in which disaggregation models are
applied. In fact, it is the extension of the moving-blocks boot-
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strap to multivariate time series analysis which motivated this
study. We concentrated on the bootstrap of univariate time
series first, to set the stage for future work on multivariate time
series. Hopefully, future research will address the potential
advantages of the bootstrap in a multivariate framework.

Parametric multivariate time series models can be extremely
complex. Sometimes the number of parameters in a multivar-
iate disaggregation model is larger than the number of stream-
flows available for parameter estimation. For example, Grygier
and Stedinger [1988] discuss a 10-site Valencia-Schaake disag-
gregation model which has 8580 parameters and requires 72
years of record to have as many data points as there are model
parameters. In that example, Grygier and Stedinger point out
that 130 years of data would be necessary to have sufficient
information to uniquely define some of the model parameters.
Clearly, the correct implementation of models of that scale of
complexity requires considerable time, money, computational
ability, and theoretical knowledge. The moving-blocks boot-
strap offers a dramatically simpler approach with potential
advantages due to the lack of a required model structure and
associated parameter estimation schemes.
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